54,203 research outputs found

    Toward a more economical cluster state quantum computation

    Full text link
    We assess the effects of an intrinsic model for imperfections in cluster states by introducing {\it noisy cluster states} and characterizing their role in the one-way model for quantum computation. The action of individual dephasing channels on cluster qubits is also studied. We show that the effect of non-idealities is limited by using small clusters, which requires compact schemes for computation. In light of this, we address an experimentally realizable four-qubit linear cluster which simulates a controlled-{\sf NOT} ({\sf CNOT}).Comment: 4 pages, 2 figures, RevTeX4; proposal for experimental setup include

    A model for J/ψJ/\psi - kaon cross section

    Full text link
    We calculate the cross section for the dissociation of J/ψJ/\psi by kaons within the framework of a meson exchange model. We find that, depending on the values of the coupling constants used, the cross section can vary from 5 mb to 30 mb at s∼5\sqrt{s}\sim5 GeV.Comment: 4 pages, 3 eps figure

    Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy

    Full text link
    We consider quantum computations comprising only commuting gates, known as IQP computations, and provide compelling evidence that the task of sampling their output probability distributions is unlikely to be achievable by any efficient classical means. More specifically we introduce the class post-IQP of languages decided with bounded error by uniform families of IQP circuits with post-selection, and prove first that post-IQP equals the classical class PP. Using this result we show that if the output distributions of uniform IQP circuit families could be classically efficiently sampled, even up to 41% multiplicative error in the probabilities, then the infinite tower of classical complexity classes known as the polynomial hierarchy, would collapse to its third level. We mention some further results on the classical simulation properties of IQP circuit families, in particular showing that if the output distribution results from measurements on only O(log n) lines then it may in fact be classically efficiently sampled.Comment: 13 page

    Investigating the tetraquark structure of the new mesons

    Get PDF
    Using the QCD sum rule approach we investigate the possible four-quark structure of the recently observed mesons DsJ+(2317)D_{sJ}^{+}(2317), firstly observed by BaBaR, X(3872), firstly observed by BELLE and D0∗0(2308)D_0^{*0}(2308) observed by BELLE. We use diquark-antidiquark currents and work in full QCD, without relying on 1/mc1/m_c expansion. Our results indicate that a four-quark structure is acceptable for these mesons.Comment: 4 pages 1 eps figure, proceedings of the XVIII Workshop on Hadronic Interactions (RETINHA-18) Sao Paulo-S

    Looking for meson molecules in B decays

    Get PDF
    We discuss the possibility of observing a loosely bound molecular state in a B three-body hadronic decay. In particular we use the QCD sum rule approach to study a η′−π\eta^\prime-\pi molecular current. We consider an isovector-scalar IGJPC=1− 0++I^G J^{PC}= 1^-~0^{++} molecular current and we use the two-point and three-point functions to study the mass and decay width of such state. We consider the contributions of condensates up to dimension six and we work at leading order in αs\alpha_s. We obtain a mass around 1.1 GeV, consistent with a loosely bound state, and a η′−π→K+K−\eta^\prime-\pi\rightarrow K^+ K^- decay width around 10 MeV.Comment: 7 pages, 8 figure

    Multiphoton resonances for all-optical quantum logic with multiple cavities

    Get PDF
    We develop a theory for the interaction of multilevel atoms with multimode cavities yielding cavity-enhanced multiphoton resonances. The locations of the resonances are predicted from the use of effective two- and three-level Hamiltonians. As an application we show that quantum gates can be realized when photonic qubits are encoded on the cavity modes in arrangements where ancilla atoms transit the cavity. The fidelity of operations is increased by conditional measurements on the atom and by the use of a selected, dual-rail, Hilbert space. A universal set of gates is proposed, including the Fredkin gate and iSWAP operation; the system seems promising for scalability
    • …
    corecore